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Outline
® Present experimental constraints on sterile neutrino models
® Sensitivity to sterile neutrinos in MiniBooNE

® Neutrino flux and cross-sections, and their importance for the MiniBooNE
v,, disappearance measurement
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Beyond minimal extensions of the SM

® Minimally extended SM: three massive neutrinos

® There are three experimental hints pointing toward neutrino oscillations:

e Two-neutrino oscillation approximation:
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Is LSND due to v, — 7, oscillations? MiniBooNE will tell

® The LSND evidence: <P(DH — Ue)) = (0.264 £ 0.045 + 0.067)%

e MiniBooNE will address in a definite and independent way the LSND evidence
for /,, — Ve oscillations
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Sterile neutrino models: a wide range of possibilities. . .

e (Can solar, atmospheric, and LSND be explained by introducing one or more
neutrinos with no standard weak couplings (“sterile neutrinos”)?

® Noninteracting particles can be hard to find experimentally, but not
theoretically. . . most theories explaining the origin of neutrino masses require
sterile neutrinos!

® Possible neutrino mass and mixing scenarios (colored bo indicate weak
flavor content of mass eigenstates):
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Constraints on (3+1) and (3+2) models from SBL
experiments

® General oscillation formula depends on several neutrino masses 1m; and ele-
ments U,; of the mixing matrix relating flavor to mass eigenstates:

P(vy — vg) = dap — 42 Z UaiUpUaiUpgi sin2[1.27L(m§ — m?)/E]

Jj>t 1

® (3+1), (3+2): can consider constraints from short-baseline experiments only

e (3+1): P(v, — v.) depends only upon my, Ues, U4

(
e (3+2): P(v, — v.) depends only upon my, Ues, U,a, ms, Ues, Uys

® Method: perform a combined X2 analysis of the “Null Short- BaseLine” exper-
iments Bugey and CHOOZ (v, — v,), CCFR and CDHS (v, — v,), KARMEN
(7, — ve), to derive upper limits on the LSND oscillation probability

prsnp = (P(v, — Ue))rLsND : ¥ — U, probability averaged over LSND L/E distribution

—> is this NSBL upper limit consistent with the nonzero LSND result?
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The (3+1) case

Two-neutrino approximation is valid
for (3+1) models

= In (sin” 20,,., Am?) space, the
region to the right of the curve is
EXCLUDED at 90% CL by NSBL

experiments

Some Am? “islands” are allowed
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The (3+2) case

Limits on the LSND oscillation probability (90% CL)

. _ _ +—— NSBL Limit for (3+1)
prLsnp = (P(Uy, — Ue))LSND =
f NSBL Limit

v, — U, probability averaged over LSND L/E  for (3+2)

NSBL 90% upper limits for (3+2) models are less E

stringent than for (3+1) models by ~ 40% P § NP Resut

= (3+2) models to be preferred to (3+1)7 b e
PLwp (10

Limits on “2v mixing” (90% CL)

2v approximation is not valid for (3+2), since there are

2, .2 2 2 2
three Am~*: mj, mz, m: — mj.

Define “effective” 2 mixing angle 0, and Am?:

sin® 20,c.cpp(sin*(1.27Am?2, L/ E)) LsND = PLSND
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Preferred values of neutrino masses in (3+1) and (3+2)
models

® A joint analysis of NSBL and LSND data gives the following allowed regions
(grey is 90% CL, black is 99% CL):

(3+1) o (3+2)
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® A combined analysis gives much better guidance than LSND alone on what
Am? might be responsible for the LSND signal
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MiniBooNE

e 12 m in diameter sphere filled with 800 tons
of mineral oil

® A sphere-within-a-sphere:

e Light tight inner signal region is lined with
1280 PMTs
10% coverage

e Outer spherical shell serves as veto region (240
PMTs)

® Neutrino interactions in the oil produce:

e Prompt and ring-distributed Cherenkov light

e Late and isotropically-distributed scintillation
light
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Typical muon candidate event
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MiniBooNE physics potential

® MiniBooNE result on 1/, — U, search expected by 2005

® Between now and 2005. . .

e results on v, disappearance
e searches for exotic particles
e supernova watch

® cross-section measurements

® Neutrino models explaining LSND can give a measurable v,, deficit in Mini-

BooNE:
Model | Is a MiniBooNE Disappearance Sensitive?
(3+1) yes
(3+2) yes
(24-2) no?
CPTV yes (in I/, running)
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v, disappearance in (3+1): how large can it be?

V,, — Ve Space:

Vv, — Vg space:

Pick as example three viable < < F.
o . ~ B LSND 90% CL ~ .
models, from joint t R
NSBL+LSND analysis: S 2
0 - S T
2 2
mi=19eV?, Ugy =012, Uy = 0.23
2 2 ---- CCFR 90% CL
mi =0.91 eV, Ugy =0.14, U,y = 0.20 L L T
m3 = 0.47 eV?, Ugy = 0.12, U,y = 0.40 H T
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sin® 26, sin’ 28,
> MiniBooNE
MiniBooNE can see a large v, deficit
Energy shape information can
significantly improve the MiniBooNE
sensitivity for:
few 0.1 < Am? < few eV?
L/E (km/GeV)
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v,, disappearance sensitivity in MiniBooNE
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® MiniBooNE reach at low Am? should extend significantly beyond present lim-
its. This is a very interesting neutrino mass region!
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v,, disappearance: limiting experimental factors

® The MiniBooNE 1/, measurement will be systematics-dominated

® Systematics affecting the rate and energy distribution:

Number of beam protons
Yy ux

vy, cross-sections

Event reconstruction

Energy resolution/calibration
Event selection

® A two-detector experiment (BooNE?) can

push the sensitivity curve “to the left”: by taking far-to-near v, event rate
ratios, some systematic uncertainties cancel

push the sensitivity curve “down”: by placing the 2nd detector downstream of
the 1st, low Am? reach can be further extended

® Main uncertainties: Yy flux and cross-section
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Primary Beam:

high-intensity 8 GeV
proton source from
FNAL Booster.

MiniBooNE requires
10%! protons on target
& 2 years of running
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The BooNE Beam
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Secondary Beam:
protons strike a 71
cm beryllium target,
producing secondary
nts, K*’s.

Magnetic focusing of
secondary beam from
horn surrounding the
target

. I
_|_
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Neutrino Beam:

™ — ut v, in the
25/50 m decay chan-
nel.

After absorber, al-
most pure v, beam
pointing towards the
detector
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Neutrino flux in MiniBooNE

o
~

(@]
W
T

® v, flux peaks at ~ 1 GeV

Q
N

® Flux uncertainty is due to the Tt

production uncertainty in p-Be
interactions

v Flux (arbitrary units)

10 &

d 0.5 1 1.5 2 2.5 3
E, (GeV)

® To gain a better understanding of the flux:

e combined analysis of existing 7 production data in p-Be
= “K2K-style” global parametrization of d”c /dp dcos 6 for p + Be — 7 4+ X

e collaboration with BNL E910 experiment to analyze more recent data on thin Be targets

e collaboration with HARP experiment at CERN
= data taken last summer with replica of thick Be target used in MiniBooNE; data
analysis is ongoing

o GEANT4-based simulation of the flux interfaced to all this wealth of physics information
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Flux 1: combined analysis of existing
p+ Be — 7" + X data

® MiniBooNE needs: pp = 8.9 GeV/c, pr = 0.5 -4 GeV/c, 0, = 0 - 15 deg

e “Sanford-Wang” parametrization fits data reasonably well (10-15% level):

| Experiment | O (deg) | py, (GeV/c) | pr (GeV/c) | Error |

Allaby 70 0-5 19.1 6-18 15 - 20%
Asbury 68 12, 15 12.5 3-5 15%
Cho 71 0-11 12.4 2-6 10 - 15%
Dekkers 64 0,5 18.8 2-12 10%
E910 2001 15, 31.8 12.3, 17.5 0.1-1.2 5-10%
Marmer 71 0,3,5 12.3 0.5-2.5 15%
Papp 75 12.5 1.753 - 5.0 0.5-3.5 10%
Vorontsov 88 3.5 10.1 1-4.5 25%

(analysis by Jocelyn Monroe, Columbia U.)
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Flux 2: HARP and BNL E910

e Current generation experiments, with better statistics and particle ID, 47 cov-
erage, wider choice of beam momenta and targets

BNL E910

® Goal: reduce uncertainty in m-production data to the few % level

e HARP should allow us to understand 7" reinteractions in Be as well (thin/thick

target comparisons)
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Neutrino cross-sections in the ~ 1 GeV range

® For a good review: Sam Zeller, “Low Energy Neutrino Interactions”, U1.004

e Dominant processes at 1 >~ GeV are neutrino-nucleon Quasi-Elastic scattering
and resonant 7 production:
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® Not very well understood:

e Not much data,
e Nuclear effects play an important role

e Transition region: inelastic channels start to contribute
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Quasi-Elastic cross-section and v, disappearance

The best known process is the QE interaction

= select a “QE-like” data sample only for
MiniBooNE v,, disappearance?
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® Collaborative effort to improve the cross-section knowledge is ongoing. Two

examples:

e use e -nucleus scattering data to understand nuclear effects

e reanalyze 20 yr-old data with updated free nucleon form factors (see H. Budd, A. Bodek,

P13.011)

Michel Sorel, Columbia U.
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Summary

Phenomenologists like sterile neutrinos to explain LSND. ..
and theorists like them too!

Combining LSND with other oscillation results provides hints where to look
How to find sterile neutrinos? Disappearance measurements
Disappearance can be large!

MiniBooNE v, disappearance result will extend beyond our current sensitivity
reach

50k v,, event candidates are on tape already, and MiniBooNE should have a
competitive V/,, disappearance measurement by 2003

Conclusive test of the LSND evidence for oscillations in 2005, with the Mini-
BooNE V), — Ve result
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